

MAN-003-001602

Seat No. ____

B. Sc. (Sem. VI) (CBCS) Examination

March / April - 2018

Physics: Paper - PHYS. - 602

(Statistical Mechanics, Solid State Physics & Plasma Physics) (New Course)

> Faculty Code: 003 Subject Code: 001602

Time : $2\frac{1}{2}$ Hours

[Total Marks: 70

Instructions: (1) Symbols and notations have their usual meaning.

- (2) Total marks of the question is indicated on the right side of the question.
- (3) Attempt as many questions as instructed in the main question.
- 1 Write short answers to the following questions:

20

- (1 Mark each)
- (1) The MB statistics refers to which type of particles so far as the identity and distinguishability properties of the particles are concerned?
- (2) With how many coordinates the phase space is denoted? Which are they?
- (3) Write the Sterling's formula in mathematical form.
- (4) Write the mathematical expression showing Dulong-Petit law.
- (5) Bosons belong to which branch of statistical mechanics in physics ?
- (6) How hv and kT are mathematically related for which the Wein's law is valid?
- (7) The Powder Diffraction method in X-ray diffraction makes use of fine particles of Crystals known as ?
- (8) Bragg equation is a condition for achieving which type of interference ?

- (9) What is wavelength range in which the X-rays can be put to use for crystal structure determination of crystalline solids by diffraction experiment?
- (10) Ideally apart from the Bragg positions in the X-ray diffraction pattern which type of interference occur?
- (11) Write the value of the temperature below which liquid mercury turns in superconducting state.
- (12) What happens to the reflectivity of the material when it gets into superconducting state ?
- (13) Which type of magnetism is shown by the material which is in superconducting state?
- (14) What is the total charge of a cupper pair in terms of electronic charge ?
- (15) Give the mathematical expression showing the conductivity of any material in term of mobility of the charge carriers.
- (16) Photo-sensitivity of the material can be shown by which type of gain ?
- (17) Who gave the theory of PLASMA oscillation?
- (18) What percentage of matter in the universe is believed to be in PLASMA state?
- (19) In the MHD method of PLASMA production, what does MHD stands for ?
- (20) Write the names of the types of Liquid Crystals.
- 2 (a) Write short answers to any three of the followings: 6 (2 Marks each)
 - (1) Give two examples each of the Boltzons, Fennions and Bosons.
 - (2) Define in brief the Macro states and Micro states in statistical physics.
 - (3) What is Black Body and Black Body radiation? Give explanation in brief.
 - (4) What is Debye temperature for solids? Explain briefly.
 - (5) Write brief note on Laue's X-ray diffraction pattern.
 - (6) Calculate the Bragg's angle (2θ) for the (110) peak of crystals having simple cubic system with lattice parameter a = 10 Å and $\lambda = 1.54056 \text{ Å}$

[Contd....

- (b) Write answers to any three of the followings:
 - (3 Marks each)
 - (1) Prove that the volume of cell in phase space is $d\tau > h^3$.
 - (2) Prove that electrons in atoms are indistinguishable particles.
 - (3) Write note on Einstein's theory of specific heats of crystalline solids.
 - (4) Give comparison between MB statistics, BE statistics and FD statistics.
 - (5) Write note on Rotating Crystal diffractometer.
 - (6) Derive the mathematical expressions for the inter planner distances d for in terms of Miller indices (h k l) and lattice parameters a, b, c for cubic system, tetragonal system and orthorhombic system.
- (c) Write answer to any two of the followings:
 - (5 Marks each)
 - (1) Derive the distribution law for FD statistics.
 - (2) Derive the mathematical expression for the Planck's radiation law.
 - (3) Explain in detail the X-ray powder diffraction method.
 - (4) Derive the classical MB statistical distribution law.
 - (5) Write note on Cholesteric Liquid crystals.

9

- 3 (a) Write short answers to any **three** of the followings: 6 (2 Marks each)
 - (1) What is tunnelling effect and explain it in context of superconductors.
 - (2) Write the properties of the superconductors which do not change in the superconducting state.
 - (3) Explain the state of PLASMA.
 - (4) Explain the absorption in PLASMA.
 - (5) Give examples of the applications of Liquid Crystals
 - (6) Give examples of the photo-conducting materials.
 - (b) Write answers to any three of the followings: 9
 - (3 Marks each)
 - (1) Explain the thermodynamics of superconducting state.
 - (2) Write note on the persistent current in superconductor.
 - (3) Derive the equation of London's theory of superconductors.
 - (4) Write note on the Electro-Luminescence.
 - (5) Briefly explain the electronic transitions in photoconductors.
 - (6) Write about the applications of PLASMA.
 - (c) Write answer to any two of the followings: 10
 - (5 Marks each)
 - (1) Write detailed note on the BCS theory of superconductors.
 - (2) Write detailed note on the Josephson effect of superconductors.
 - (3) Write detailed note on Photo-sensitivity.
 - (4) Describe the method of production of PLASMA in absence of any type of gas.
 - (5) Write detailed note on PLASMA frequency.